пятница, 23 января 2026 г.

Этюды из математики

Любопытное открытие, сделанное в 1996 году исследователями Дэвидом Бэйли, Питером Боруэйном и Саймоном Плаффом. Им удалось найти довольно простую формулу — сумму бесконечного ряда членов, — с помощью которой можно вычислить любой знак числа пи, не зная ни одного предыдущего знака.

Строго говоря, вычисляемые по формуле Бэйли — Боруэйна — Плаффа знаки не десятичные, а шестнадцатеричные, то есть представлены по основанию 16.)\

На первый взгляд это кажется невозможным, да и для других математиков стало полным сюрпризом. Но еще больше поражает другое: для того чтобы вычислить с помощью этого метода, к примеру, миллиардный знак числа пи, достаточно обычного ноутбука и совсем немного времени — меньше, чем на обед в ресторане. Разные варианты формулы Бэйли — Боруэйна — Плаффа могут использоваться для поиска других “иррациональных” чисел, подобных пи, с десятичными знаками, что убегают вдаль бесконечной цепочкой, нигде не повторяясь.

Все, что нам осталось, — это вероятность, да и с той нет полной ясности. Существует несколько интерпретаций. Самое распространенное толкование — частотное.

Говоря о вероятности какого-либо события, “фреквентисты” имеют в виду шансы его наступления при многократном повторении одного и того же эксперимента. Но бывают случаи, когда такая стратегия бесполезна, например когда речь идет о событии, которое может произойти только один раз. Альтернативой тогда служит байесовский метод, названный так в честь английского ученого-статистика XVIII века Томаса Байеса. Расчет вероятности этим методом основан на степени нашей уверенности в определенном результате, то есть вероятность рассматривается как субъективное понятие.

Особенно интересно различия между байесовским и частотным подходами проявляются, когда их применяют к математическим понятиям. К примеру, спросим себя, является ли септиллионным знаком числа пи (на сегодня неизвестным) пятерка? Заранее знать ответ невозможно, но после того, как он будет вычислен, он уже никогда не изменится: сколько ни повторяй расчет числа пи, ответ будет всегда один и тот же. 

Если следовать частотной интерпретации, вероятность того, что септиллионный знак будет пятеркой, равна либо 1 (достоверное событие), либо 0 (невозможное) — другими словами, это или пятерка, или нет. Допустим, доказано, что число пи нормально, то есть мы точно знаем, что в составляющей его бесконечной цепочке знаков каждая из десяти цифр имеет одинаковую плотность распределения. Согласно байесовской интерпретации, отражающей нашу степень уверенности в том, что септиллионным знаком является именно пятерка, вероятность этого — 0,1 (ведь если число пи нормально, то любой его знак, пока он не вычислен, может с одинаковой вероятностью быть любой цифрой от 0 до 9). Но вот после того, как мы этот знак вычислим (если такое когда-нибудь произойдет), вероятность уже точно будет либо 1, либо 0. Фактическое значение септиллионного знака пи нисколько не поменяется, но вероятность того, что это пятерка, изменится — именно потому, что у нас будет больше информации. 

Информация играет определяющую роль в байесовском подходе: по мере повышения собственной информированности мы можем корректировать значение вероятности, делая его точнее. А при наличии полной информации (скажем, когда определенный знак числа пи вычислен) значения частотной и байесовской вероятности становятся одинаковыми — если мы возьмемся заново рассчитать уже вычисленный знак пи, ответ нам будет известен заранее. Зная все нюансы физической системы (в том числе некоторый элемент случайности, как, например, при распаде атомов радия), мы можем в точности повторить эксперимент и получить частотную вероятность, идеально совпадающую с байесовской.

И хотя байесовский подход кажется субъективным, он может быть строгим в абстрактном смысле. Предположим, у вас есть несимметричная монета: вероятность выпадения орла при ее подбрасывании может равняться какому угодно значению от 0 до 100 %, причем любое из них равновозможно. Бросаем ее первый раз — выпадает орел. Используя байесовскую интерпретацию, можно доказать, что вероятность выпадения орла при втором броске составляет ⅔. Но ведь начальная вероятность выпадения орла была ½, а монету мы не меняли. Байесовский подход позволяет рассуждать так: выпадение первого орла, конечно, не влияет напрямую на вероятность его выпадения при втором броске, но этот факт дает нам дополнительную информацию о монете, а с помощью этой информации мы уточняем свою оценку. Если монета сильно несимметрична в пользу решки, вероятность выпадения орла очень мала, а если сильно несимметрична в пользу орла, то вероятность его выпадения гораздо выше.

Байесовский подход также помогает избежать парадокса, впервые сформулированного в 1940-х годах немецким ученым-логиком Карлом Гемпелем. Когда люди видят, что один и тот же принцип (скажем, закон гравитации) исправно действует в течение долгого времени, они склонны делать вывод, что он с очень высокой вероятностью верен. Это так называемое индуктивное умозаключение, которое можно коротко сформулировать так: если наблюдаемое соответствует теории, то вероятность того, что эта теория верна, увеличивается. С помощью описанного им парадокса воронов Гемпель продемонстрировал, в чем слабое место индуктивной логики.

В своем рассказе “Вавилонская библиотека” аргентинский писатель Хорхе Луис Борхес рассказывает о библиотеке огромного, возможно бесконечного, размера с невообразимым количеством книг. 

Все книги имеют одинаковый формат: “в каждой книге четыреста страниц, на каждой странице сорок строчек, в каждой строке около восьмидесяти букв черного цвета”. Все тексты написаны на экзотическом языке, использующем только 22 буквенных символа, запятую, точку и пробел, но в книгах на полках библиотеки можно обнаружить все возможные комбинации этих знаков. Большинство книг содержат лишь бессмысленный набор букв; в других сочетания упорядоченны, но все равно лишены какого-либо смысла. Например, одна из книг целиком состоит из повторяющейся буквы M. В другой – все то же самое, кроме второй буквы, вместо которой стоит N. Есть книги со словами, предложениями и целыми абзацами, построенными по правилам грамматики того или иного языка, но абсолютно нелогичными. Есть исторические труды. Есть такие, в которых утверждается, что они содержат подлинную историю, но на деле они являются вымыслом. В некоторых даны описания еще не изобретенных машин и не сделанных открытий. Где-то на полках есть книга, содержащая все сочетания используемых 25 знаков, которые только можно себе представить или записать. И однако же все это гигантское хранилище книг совершенно бесполезно, поскольку, не зная заранее, что правда, а что ложь, что истина, а что вымысел, какая информация значима, а какая бессмысленна, невозможно извлечь из этого всеобъемлющего собрания символов никакой пользы. 

То же касается и старой идеи о том, что армия обезьян, беспорядочно стучащих по клавишам пишущих машинок, способна в конце концов произвести на свет собрание сочинений Шекспира. Они напечатают и решения всех научных проблем современности (хоть на это и потребуются триллионы лет). Проблема лишь в том, что они также напечатают и все неправильные решения, а вместе с ними убедительные опровержения всех правильных решений – и все это не считая умопомрачительных объемов абсолютной белиберды. Нет никакого смысла иметь перед глазами ответ на вопрос, если в одну кучу с ним свалены все возможные комбинации символов, из которых он состоит, а вы не имеете представления, какая из них верная.

В каком-то смысле интернет с его громадным объемом полезной информации, затерянной в многократно превышающем его объеме сплетен, полуправды и полной галиматьи, становится все более похожим на библиотеку Борхеса – вместилище всего на свете от глубокого научного знания до совершеннейшего бреда. Есть даже сайты, имитирующие Вавилонскую библиотеку: за долю секунды они выдают полотно случайных цепочек из букв, где иногда могут содержаться реально существующие слова или даже осмысленные обрывки информации. Когда у нас под рукой такой объем информации, кому или чему можно доверить роль третейского судьи, объективно оценивающего, что подлинно и достоверно? В конечном итоге, поскольку информация существует в виде наборов цифр, хранящихся в недрах электронных процессоров и носителей данных, ответ должен лежать где-то в области математики.

Цитировался: Агниджо Банерджи, Дэвид Дарлинг. Эта странная математика. На краю бесконечности и за ним.

ИИ, и в частности LLM значительно лучше порождает множество текстов нежели орда обезьян, стучащих по клавиатурам, но тем не менее он безразличен к тому, что мы называем правдой или научной истиной.

Комментариев нет:

Отправить комментарий